HOW TO BUILD
MACHINE LEARNING
ALGORITHMS USING
HOMOMORPHIC
ENCRYPTION

LUIZ PIZZATO, PHD
ACCENTURE LIQUID STUDIO ANZ accen?ure

WHAT TO EXPECT FROM TODAY

“%)e)@

Practical

WHAT NOT TO EXPECT FROMTODAY

WHY DO YOU WANT TO
HAVE HE+ML? HE+MLIS ¢

v
.

Homomorphic encryption is a form of encryption that
allows computation on ciphertexts, generating an encrypted result
which, when decrypted, matches the result of the operations as if they

had been performed on the plaintext. The purpose of homomorphic
encryption is to allow computation on encrypted data.

https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext

Homomorphic encryption is a form of encryption that

allows computation on ciphertexts, generating an encrypted result
which, when decrypted, matches the result of the operations as if they
had been performed on the plaintext. The purpose of homomorphic
encryption is to allow computation on encrypted data.

BFCOOD8B7 FDO93A8316 C7A3340A15
D28FEE302F OOE3081AD4 30699E4C59
OA773C4969 E6E2479CBE 49D77DB38F
15F881E34F7 93A68C7E14 88F192E093

1F657119003 AB48F4962A 304B50606
BC4D7AFAD FC5872D683 EFDFA86DEC

https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext

IIIIIIIIIIIIIIIII

STRONG PUBLICKEY
ENCRYPTION

Two Part Key - Public and Private Keys
« Public key used for encryption

 Private/Secret key for decryption

Private key cannot be (practically) derived from public key information

Base on hard mathematical problems that is very hard to find the reverse of the trapdoor
function

RSA relies on how difficult is to factorise the product of two large prime numbers

RSA is a simple algorithm but computationally hard to reverse:

Check the simplicity of the RSA algorithm: (https://en.wikipedia.org/wiki/RSA_(cryptosystem))

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

LATTICE-BASED
ENCRYPTION

Lots of hard lattice problems
No quantum solution
Numbers represented as polynomials

u,) Vi Example number 1025 as polynomials
U, 2 x=10 x3 + 2x! + 5xO (1,0,2,5)10
= x=2 x10+x0 (1,0,0,0,0,0,0,0,0,0,1),
o - ° x=3 xO+x5+x3+2x242x+2x° (1,1,0,1,2,2,2);

WHAT'S NEXT?

“3)00)@

Practical

Machine learning (ML) is a field of artificial intelligence that uses

statistical techniques to give computer systems the ability to "learn”
(e.g., progressively improve performance on a specific task) from data,

without being explicitly programmed.!2]

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Machine_learning

Machine learning (ML) is a field of artificial intelligence that uses

statistical techniques to give computer systems the ability to "learn”
(e.g., progressively improve performance on a specific task) from data,

without being explicitly programmed.!2]

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Machine_learning

.
. g
- ...:.’~!~

-.;i-.----l-
.*i------

PR R 2

4

]
.»’-'

Feavamnay

*
Liw
-

LA A MR RS NN NN ENNEER D

”~
A

!

xR
e e N

Y

-
S8

3

o

'...Illillllllllllll.
e M AR R R AR R
"-'-Q-_.QQl-ll--l-i-l

S

-
_,g:'.‘llllllllllllllll‘

4,..‘

i
'y
4

-

-
-
| DS

WHAT'S NEXT?

Practical

MACHINE LEARNING ALGORITHMS

@ e 9

Linear Models Tree-Based Neighbourhood-
Methods Based Methods
T

Naive Bayes Neural Networks Matrix Ensemble
Factorisation Methods

GRADIENT DESCENT

A
J(w) Initial ! Gradient
We|ght \ ,’I/
‘Il
3J(04,0,) . ”
— /
lll
. 02 P Global cost minimum
| i LS W)
4 08 01)
L o - N

Minimise cost/loss function
. 1% . o
- Regression: 1) :EZ(hg(x(’))—y(‘))

- Classification: /@ =-5 2" 1ogly) + (1 = y?) log(l = hy(x))]

i=1

GRADIENT DESCENT - REGRESSION

Model: h@(x) = @Ob + @Tx

Cost Function — “One Half Mean Squared Error”:

m
1 . N2
J (6o, 6,) = %Z(he(x(l)) —y®)
1=

Objective:
min J (8o, 61)

Update rules:

d
0o = 6y — QE](GO' 61)

d
0, =0, — QE](GOI 1)

Derivatives:

d 1 & .)
d_eoj(eo, 6,) = EZ(he(x(z)) _y®)
1=

d 1< . : .
757 B0 02) = EZ(he (x®) = y®) - x®
1=

GRADIENT DESCENT - CLASSIFICATION

Model: hy(x) = 0(0yb + 0"x) JO) = =L ¥ [y log(he(x®)) + (1 - y?) log(1 — hy(x®))]
i=1
. . . . 1 i
Sigmoid Activation : a(z) = — O NN,
Solution:

Replace sigmoid activation by its
Taylor polynomial approximation
1 1 ., 1 . 17

1 .
a(z):§+—a:——:c +—2° — ——1x' +

31
477 48 480 80640

1451520°

MACHINE LEARNING ALGORITHMS

@ e 9

Linear Models Tree-Based Neighbourhood-
Methods Based Methods
T

Naive Bayes Neural Networks Matrix Ensemble
Factorisation Methods

NAIVE BAYES

y = ;=1 ,argmax P(class;) 1_[P(xj|class;)
j=1.f

y = ;= ,argmax LogProb(class;) + 2 LogProb(xj|class;)
j=1.f

log(1 + x) Z "Hx T

n=1

TREE-BASED METHODS

E] is sex male? E]

/N

Lsurvived)

is age > 9.57

\ 0.73 36%
‘ is sibsp > 2 57?
0.17 61%

4 surwved l

0.05 2% 0.89 2%

NEIGHBOURHOOD-BASED METHODS

Copyright © 2019 Accenture. All rights reserved. 21

MACHINE LEARNING ALGORITHMS

@ e .9

Linear Models Tree-Based Neighbourhood-
Methods Based Methods
S

Naive Bayes Neural Networks Matrix Ensemble
Factorisation Methods

WHAT'S NEXT?

)@

Practical

H E LI BRARI Es Sathya, S.S., Vepakomma, P., Raskar, R., Ramachandra, R., & Bhattacharya, S. (2018). A Review of
Homomorphic Encryption Libraries for Secure Computation. CoRR, abs/1812.02428.

Languages SEAL | HElib TFHE Paillier ELGamal RSA
C++ Yes Yes No Yes Yes Yes
Python Yes Yes No Yes Yes Yes
Java No No No Yes Yes Yes
C No No Yes No No No

Table 4. Homomorphic Library implementations across programming languages

HE LIBRARIES

https://github.com/NervanaSystems/he-transformer

HE Transformer for nGraph

The Intel® HE transformer for nGraph™ is a Homomorphic Encryption (HE) backend to the Intel® nGraph Compiler,
Intel's graph compiler for Artificial Neural Networks.

Homomorphic encryption is a form of encryption that allows computation on encrypted data, and is an attractive remedy
to increasing concerns about data privacy in the field of machine learning. For more information, see our paper.

This project is meant as a proof-of-concept to demonstrate the feasibility of HE on local machines. The goal is to measure
performance of various HE schemes for deep learning. This is not intended to be a production-ready product, but rather a
research tool.

Currently, we support the CKKS encryption scheme, implemented by the Simple Encrypted Arithmetic Library (SEAL)
from Microsoft Research.

Additionally, we integrate with the Intel® nGraph™ Compiler and runtime engine for TensorFlow to allow users to run
inference on trained neural networks through Tensorflow.

https://github.com/NervanaSystems/he-transformer

=D Microsoft | Research Researchareas . Researcher tools Programs & Events «~ Careers People Blogs & Podcasts ~ Labs & Locations All Microsoft « Search 0O

Microsoft SEAL =t
=

Overview People Publications Videos Articles News

Microsoft SEAL—powered by open-source homomorphic encryption technology—provides a set of encryption libraries that allow computations to be performed directly on encrypted data.
This enables software engineers to build end-to-end encrypted data storage and computation services where the customer never needs to share their key with the service.

Microsoft SEAL is open-source (MIT license). Start using it today!

Citing Microsoft SEAL | Contact us

pyHeal
This project implements Python wrappers for Homomorphic Encryption libraries, aimed at being more Python friendly.

It currently contains:

- A pybind11 based Python wrapper for Microsoft SEAL in seal_wrapper

- A Pythonic wrapper for seal_wrapper in pyheal/wrapper.py

- A Python ciphertext type of object that allows math operations as if they were python numbers in pyheal/ciphertext_op.py

- A standard encoder/decoder interface for seal encoders and encryptors for use of the CiphertextOp objects in pyheal/encoders.py .

Tests:
- A partial re-implementation of Microsoft SEAL's examples using wrapper.py in tests.py
- A large number of tests for PyHEAL and CiphertextOp in pyheal/test_pyheal.py

Setup

Clone using:
Git v2.13+: git clone --recurse-submodules (repository URL)

Git v1.6.5 - v2.12: git clone —--recursive (repository URL)

For a repository that has already been cloned or older versions of git run:
git submodule update —-init —--recursive

Build

This project can be built directly using pip3.
Optionally create and activate a new Python virtual environment using virtualenv first, for example:

python3 -m virtualenv ./venv ——python python3

#Linux
source ./venv/bin/activate

#Windows
#venv\Scripts\activate

Install dependencies and package:

pip3 install .

Usage

import pyheal

Set encryption params + obtain an EncryptorOp object

encryptor
decryptor

EncryptorOp(...)
Decryptor(...)

vl = encryptor_encoder.encode(10)
v2 = encryptor_encoder.encode(20)

result = vl + v2

print(decryptor.decrypt(result)) # Prints 30 after decrypt

See example_usage.py for more usage examples.

Copyright © 2019 Accenture. All rights reserved.

29

Jupyter Notebook Demo

PyHEAL Demo

Library import

In [1]: from pyheal import wrapper
from pyheal import encoders

HE scheme initialisation

In [2]: def get_encryptor decryptor():

"won

Return an encryptor and a decryptor object for the same scheme

"won

scheme = 'BFV'

poly modulus = 1 << 12
coeff modulus_ 128 = 1 << 12
plain_modulus = 1 << 10

parms = wrapper.EncryptionParameters(scheme_ type=scheme)

parms.set_poly modulus(poly modulus)
parms.set_coeff modulus(wrapper.coeff modulus_ 128 (coeff modulus_128))
parms.set_plain_modulus(plain_modulus)

seal context_ = wrapper.Context(parms).context
keygen = wrapper.KeyGenerator (seal context)

plaintext_encoder = encoders.PlainTextEncoder (
encoder=wrapper.FractionalEncoder (smallmod=wrapper.SmallModulus(plain_modulus),
poly modulus_degree=poly modulus,
integer coeff count=64,
fraction_coeff count=32,
base=2)

)

encryptor_encoder encoders.EncryptorOp(plaintext_encoder=plaintext_encoder,

encryptor=wrapper.Encryptor (ctx=seal_context , public=keygen.public_key()
evaluator=wrapper.Evaluator(ctx=seal_context_),

relin_key=keygen.relin keys(decomposition_bit_ count=16, count=2)

)

decryptor_decoder = encoders.Decryptor(plaintext encoder=plaintext_encoder,
decryptor=wrapper.Decryptor (ctx=seal_context , secret=keygen.secret_key())

)

return encryptor_encoder, decryptor_decoder

encryptor_encoder, decryptor decoder = get_encryptor decryptor()

Simple operations

In [3]: a = 10
b = 20
r=a+b
r
Out[3]: 30
In [4]: = encryptor encoder.encode(10)

= a+ b

a
b = encryptor_ encoder.encode(20)
r
r, decryptor decoder.decode(r)

Out[4]: (<pyheal.ciphertext op.CiphertextOp at 0x10ed56d00>, 30.0)

List operations

In [5]: import numpy as np
In [6]: numbers = list(np.random.randint(-100,100,10))
numbers

out[6]: [-89, 56, -56, 5, -28, 56, -88, -76, 82, 5]

In [7]: sum(numbers)

Out[7]: =133

In [8]: enumbers = encryptor encoder.encode(numbers)
enumbers

Out[8]: [<pyheal.ciphertext op.CiphertextOp at 0x110639990>,
<pyheal.ciphertext op.CiphertextOp at 0x1106399e8>,
<pyheal.ciphertext op.CiphertextOp at 0x110639a40>,
<pyheal.ciphertext op.CiphertextOp at 0x110639a98>,
<pyheal.ciphertext op.CiphertextOp at 0x110639af0>,
<pyheal.ciphertext op.CiphertextOp at 0x110639b48>,
<pyheal.ciphertext op.CiphertextOp at 0x110639ba0>,
<pyheal.ciphertext op.CiphertextOp at 0x110639bf8>,
<pyheal.ciphertext op.CiphertextOp at 0x110639c50>,
<pyheal.ciphertext op.CiphertextOp at 0x110639ca8>]

In [9]: sum(enumbers), decryptor decoder.decode(sum(enumbers))

Out[9]: (<pyheal.ciphertext op.CiphertextOp at 0xl0eceed00>, -133.0)

In [34]:

Out[34]:

In [11]:

out[1l1l]:

Mix list operations

penumbers = np.random.choice(numbers+enumbers, size=10, replace=False)

penumbers

array([<pyheal.ciphertext op.
<pyheal.ciphertext op.
<pyheal.ciphertext op.
<pyheal.ciphertext op.
<pyheal.ciphertext op.
<pyheal.ciphertext op.

dtype=object)

CiphertextOp
CiphertextOp
CiphertextOp
CiphertextOp
CiphertextOp
CiphertextOp

object
object
object
object
object
object

at
at
at
at
at
at

0x110639a98>,
0x1106399e8>,
0%x110639990>,
0x110639a40>, -28,
0x110639ca8>, -76,
0x110639ba0d>1],

sum(penumbers), decryptor decoder.decode(sum(penumbers))

(<pyheal.ciphertext op.CiphertextOp at 0x110639518>, -375.0)

56,
82,

In [12]:
In [13]:
Out[l3]:
In [14]:
Out[1l4]:
In [15]:
In [16]:
Out[1l6]:

Building equations

def formula(a, b, ¢, 4, e, f):
return a*b**3+c*d**2+e*f
formula(1l, 2, 3, 4, 5, 6)
86
r = formula(l, encryptor encoder.encode(2), 3, 4, 5, 6)
r, decryptor decoder.decode(r)
(<pyheal.ciphertext op.CiphertextOp at 0x110639fc0>, 86.0)

def formula2(a, b, ¢, d, e, £, g):
return formula(a, b, ¢, d, e, £f)/g

r = formula2(1l, encryptor encoder.encode(2), 3, 4, 5, 6, 7)
r, decryptor decoder.decode(r)

(<pyheal.ciphertext op.CiphertextOp at 0x1106396d0>, 12.285714274272323)

In [17]:

Out[1l7]:

In [18]:

In [19]:

Out[1l9]:

In [20]:

Out[20]:

Using pre-build equations (hnumpy, mse)

np.mean(enumbers), decryptor decoder.decode(np.mean(enumbers))
(<pyheal.ciphertext_ op.CiphertextOp at 0x1106395c8>, -13.299999981420115)

def mse(a, b):
return np.square(np.subtract(a, b)).mean()

a=7[1,2,3,4,5,6]
b [6,5,4,3,2,1]
mse(a,b)

11.666666666666666

ea = encryptor encoder.encode(a)
eb = encryptor_encoder.encode(b)
r = mse(ea, eb)

r, decryptor decoder.decode(r)

(<pyheal.ciphertext op.CiphertextOp at 0x1113cf468>, 11.666666655801237)

WHAT'S NEXT?

W)E

Practical

THANK YOU

ANY QUESTIONS?

>
accenture

